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1. BACKGROUND

1.1 DEFINITIONS

Given the binary linear integer programming problem

Minimize {cxlAx < b, x = (0,1)1 (1)

where A is an m by n matrix, a surrogate constraint for prob-

lem (1) is defined as follows:

u(b-Ax) > 0, u = (UiU 2 ,...,Um), u _ 0. (2)

We will also find it convenient to define a corresponding

one-constraint (knapsack) surrogate problem:

Minimize (cxlu(b-Ax) > 0, u >0., x = (0,1)}. (3)

1.2 PROPERTIES

Because the vector u > 0 implies that the solution set

to inequality (2) contains the solution set to (1), we have

the following properties:

1. If x* is a feasible solution to (1) it is also

feasible to (2) and (3).

2. If the surrogate constraint (2) has no feasible

solution, then neither does the original problem

(1).
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1.3 USES

Surrogate constraints are used in conjunction with implicit

enumeration algorithms (e.g., Balas) in several ways. Each

vertex in an enumeration tree represents a rctriction of

problem (1). Problems (1), (2) and (3) can be written in

explicit terms of the restriction being studied by substitution

of the variables assigned values by the restriction. If it

can be shown that a surrogate constraint corresponding to a

vertex has no feasible solution (completion), then the vertex

being studied can be fathomed by Property (2). If the vertex

cannot be fathomed, Property (1) allows the surrogate to be

appended to the constraint set as a valid constraint to be

used with the implicit enumeration tests to identify promising

variables for further exploration. Further, if the solution

to Problem (3) corresponding to the vertex restriction is

known, it provides an upper bound on the original problem (1)

if it is feasible for (1) or a lower bound on the vertex

restriction if it is infeasible for (1).

1.4 STRENGTH OF SURROGATES

In order to choose u > 0, Glover [1965] defined surrogate

u1 (b-Ax) > 0 to be stronger than u 2 (b-Ax) > 0 if

Min {cxlul (b-Ax) > 0, x = (0,1)} > Min (cxlu2 (b-Ax) > 0, x = (0,1)1,

for u , u2 > 0 (4)

This definition states that if the corresponding surrogate

2
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knapsack problems (3) are resolved, the surrogate resulting

in the more restrictive lower bound to problem (1) is stronger.

Essentially, that surrogate eliminating more solutions (as

measured by the objective function) is the stronger. This is

intuitively appealing since by Property (1) the surrogate

cannot eliminate any feasible solutions to the original prob-

lem. Thus by this definition we should choose u as follows:

Max Min {cxlu(b-Ax) > 01 (5)
u>0 x=(0,i)

Unfortunately (5) is difficult to solve for general cases,

although Glover [1965] has studied the two constraint case.

An approximation to (5) can be made by relaxing the integer

restriction on x, i.e., choose u > 0 satisfying

Max Min {cxlu(b-Ax) > 01 (6)
u>O 0<x<l

In a previous report the strength of the approximation (6) as

measured by (4) was studied, Giordano [1982]. In this report

we will present an alternative approximation to (5) and com-

pare both the strenqth and speed of the alternative approxi-

mation to the approximation suggested by (6).

2. THE DUAL MULTIPLIER SURROGATE

2.1 DEFINITION

The advantage of the relaxation to (6) is that it can be

resolved optimally yielding u° = v0 where v0 are the dual
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variables to the linear programming (LP) relaxation of (1).

Thus at any given vertex restriction, after substituting the

variables assigned values, the LP written in terms of the re-

maining free variables may be resolved and the optimal values

of the dual variables used as weights to form a surrogate

constraint. A surrogate so formed is called a dual multiplier

surrogate.

2.2 PROPERTIES/USES

As with all surrogates, if it can be shown that the dual

multiplier surrogate has no feasible solution then the vertex

can be fathomed. This test can be strengthened by requiring

that the solution to the surrogate constraint also improve the

current upper bound on problem (1), Geoffrion [1969). After

resolving the corresponding LP for the dual variables, the

value of the free variables may be used to solve the LP relaxa-

tion of (3) directly. Note in this case when solving for the

dual variables we are solving the LP relaxation of (1) corres-

ponding to the vertex restriction. If the values of the free

variables are integer, problem (1) has been solved for that

vertex and a new upper bound on the original problem has been

obtained. If the values are fractional, then a lower bound

for the vertex is obtained. If desired, heuristics may be

applied to the fractional values to identify promising varia-

bles for branching.
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2.3 COMPUTATIONAL ADVANTAGES

The dual multiplier surrogate has been widely used in

conjunction with implicit enumeration algorithms and research

has been conducted on frequency of use, maximum number of

constraints to carry forward, and related matters. It is

interesting to note the effect of the use of the dual multi-

plier surrogate on the problem set studied, which includes 18

problems with up to 50 variables and up to 10 constraints.

Seventeen of the problems required a total of 532.86 CPU

seconds (CDC 6500) using a Balas Algorithm with heuristics.

The same Balas Algorithm employing a dual multiplier surrogate

generated every eight iterations and carrying a maximum of

four surrogates forward solved the 17 problems in 32.15 CPU

seconds. Problem 18, consisting of 50 variables and 5 con-

straints, had not been solved optimally after 5631 CPU seconds

using the Balas Algorithm but was solved optimally in 6.47

seconds when the surrogate was added. The results are sum-

marized in Table 1, which is found at the end of this report.

2.4 OBSERVATIONS

The dual multiplier surrogate has been a very significant

contribution to implicit enumeration. Nevertheless, there are

disadvantages inherent in the dual multiplier surrogate when

applied to large problems. A linear program must be solved

at each vertex at which a surrogate constraint is to be formed.

As problems with larger numbers of variables are considered,

not only does the size of the corresponding LP's increase,

but more importantly, the number of vertices grows exponentially.
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Since one of the primary advantages of the Balas Algorithm is

that it is additive computationally, the necessity of solving

the LP's should be investigated. Note that the necessity to

solve the LP's makes the integer programming problem more

sensitive to the number of constraints than is otherwise the

case. Ideally one would like to build a surrogate with strength

and computational advantages comparable to the dual multiplier

surrogate but requiring less computation time.

3. AN ALTERNATIVE METHOD FOR CONSTRUCTING
SURROGATE CONSTRAINTS

Definition (4) suggests an alternative strategy for con-

structing surrogates. Given an initial surrogate a stronger

surrogate can be constructed by making the optimal solution

to the current surrogate knapsack problem infeasible for the

new surrogate constraint while continuing to eliminate less

optimal solutions. The process iterates until a stronger

surrogate can no longer be constructed. Such an iterative

procedure was developed when the strength of surrogates was

investigated, Giordano [1982]. In the referenced report, the

initial surrogate was the dual multiplier surrogate and each

surrogate knapsack problem was resolved for an optimal solu-

tion using a Balas Algorithm.

To develop a quick heuristic for constructing surrogates,

two major problems must be resolved. First an alternative

method for forming the initial surrogate must be developed

since solving the corresponding LP at each vertex is

6
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computationally costly. Secondly, an alternative process for

solving the surrogate knapsack problems must be incorporated

to avoid the computation time involved in the Balas Algorithm.

We will review the procedure for iterating to a best surro-

gate, investigate alternative methods for forming the initial

surrogate, present an approximation technique for resolving

the surrogate knapsack problems, and compare the formation

time and strength of the heuristically generated surrogate

with the dual multiplier surrogate.

4. ITERATING TO A BEST SURROGATE

4.1 AN ALGORITHM

Let us define for the current surrogate:

x the optimal solution to the current surrogate

knapsack problem.

u.: the weight of the ith constraint in the current

surrogate.

s: the slack x* allows in the ith constraint.

S : u*s : the slack x* allows in the current

surrogate.

Similarly, for the new surrogate let:

u!: the weight of the ith constraint in the new

surrogate.

S6: I us: the slack x* would allow in the new

surrogate.
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Let:

U! U*
u. = u. - .O
2 2 i2

The purpose of ai is to increase the weight of the constraints

violated by x* and 0 is a parameter to insure x* becomes

infeasible for the new surrogate. Choosing

* *2

and 6 = (S*/. s2 ) + .05

a new surrogate is generated and combined with the previous

surrogate, weighting the previous surrogate 75%. If a suc-

cessive surrogate fails to be stronger than its predecessor,

= .05 above is halved and the process repeated. If a

surrogate fails to improve after three reductions, the proc-

ess terminates with the previous surrogate judged 'best'.

4.2 COMPARING THE STRENGTH OF SURROGATES

The strength of a surrogate is measured by the optimal

solution to the corresponding knapsack problem. To compare

various surrogates the following measure proved convenient:

percent convergence = 1Z6 - z0I/z6 - zoI

where:

z0: objective function value of the optimal solution

to problem (1).
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z6: objective function value of the optimal solution

to the continuous relaxation to (1).

z": objective function value of the optimal solution

to (3) for the surrogate in question.

The percent convergence heuristically measures the number of

infeasible solutions between the continuous and integer

optimum solutions to (1) that a particular surrogate effec-

tively eliminates and is an indication of the relative strength

of two surrogates.

4.3 RESULTS

Of the 18 problems considered, the solution to the dual

multiplier surrogate knapsack problem solves the original prob-

lem directly in 7 cases. In the remaining 11 cases, it is

possible to build a stronger surrogate in 9 cases. The im-

provement in most instances is substantial. In fact, the

best surrogate obtained solves an additional 4 problems. The

results are summarized in Table 2, which is located at the end

of the report.

5. THE INITIAL SURROGATE

5.1 METHODS TESTED

Three alternative methods for forming the initial surro-

gate were tested:

1. Simply adding the original constraints.

2. Averaging the original constraints.

3. Weighting each of the original constraints according

to the right hand side.
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5.2 DISCUSSION

The advantage of Method 1 is that it is a simple way of

getting started. Method 2 attempts to prevent the initial

surrogate from becoming so large that it compromises the

weighting scheme developed in 4.1 when forming subsequent

surrogates. Method 3 attempts to exploit the format of the

problem for the vertex being studied. In the Balas format,

the problem is better than optimal with all variables at the

zero level. Variables are raised to the one level only to

cure infeasibility. For violated constraints, the current

right hand side represents the infeasibility which must be

"cured". Using Method 3, the initial surrogate is formed

weighting each violated constraint according to its relative

infeasibility. Various normalization schemes were tested to

insure a unit of slack in each constraint means approximately

the same thing.

5.3 RESULTS

For the problem set tested, Method 2 generally produces

the best results. Although the initial surrogate is normally

not as strong as the dual multiplier surrogate, the process

quickly converges to a "best" surrogate. Since the initial

surrogate is not as strong as the dual multiplier surrogate,

some loss of strength is experienced. The best surrogate

using the dual multiplier surrogate as the initial surrogate

is equaled in 12 of the 18 problems tested. More importantly,

the best surrogate generated using Method 2 above equals or

10



improves the strength of the dual multiplier surrogate in 15

of the 18 cases. The results are summarized in Table 2.

6. SOLVING THE SURROGATE KNAPSACK PROBLEMS

6.1 AN APPROXIMATE ALGORITHM

Consider the knapsack problem:

Minimize {j (-cjx) i ajx _< b, x. = 0 or 11.

By preassigning values for x. where c. and a. differ in sign

and substituting x. = 1- x' for the remaining variables where
J I

c. and a. are both negative, the above problem can be reduced

to a form with all cj, air and b positive. Arrange the indices
of x. such that c1/a 1_ c2/a ... >_ /an  We will refer

to c./a. as the knapsack ratio for x. Find p the least

integer (0 < p < n) such that I aj > b. Beginning with
j<p

r = p increment r by unit steps to n, adding each a to
p-1r
I a k if and only if the resultant cumulative sum is less than

k=l
or equal to b. Then the approximate solution is given by

1 I, if j < p or if a. is added to the summation.
!)

xj

0, otherwise.

This algorithm arranges the variables in such a manner that the

more attractive variables are elevated to level one before

infeasibility occurs, Taha (19751.
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7.Q

6.2 INCORPORATING THE APPROXIMATE KNAPSACK ALGORITHM

Since, in the algorithm presented in 4.1, it is only

necessary that a subsequent surrogate be relatively stronger

than a previous surrogate, approximate measurements of their

strengths should be sufficient. When the approximate algor-

ithm is incorporated, the desired speed is obtained, some

loss in strength in the 'best' surrogate is experienced,

fewer iterations are required to converge, and the probability

of finding a feasible solution to the original problem in-

creases. Part of the loss in strength of the best surrogate

is due to terminating the process when a feasible solution

to the original problem is found. For example, in Problem

4, the approximate solution to the best surrogate constructed

solves the original problem.

Since the approximate solution to a surrogate constraint

is greater (minimization) than the exact solution, such a

solution poses a greater restriction on the subsequent surro-

gate. This reduces the number of iterations required to obtain

a best surrogate and reduces the probability of building

stronger surrogates in the vicinity of the best surrogate,

since no surrogate can be constructed 'between' the current

surrogate and the approximate solution to the current surrogate.

The fact that the approximate solution is greater than the

exact solution to the surrogate also explains the increase in

the number of feasible solutions to the original problem found.

The computational advantage of using these feasible solutions

in the Balas Algorithm will be subsequently discussed.
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6.3 RESULTS

In the 18 problems tested, the best surrogate obtained

equals the dual multiplier surrogate in 10 cases, is stronger

in 4 cases, and weaker in 4 cases. Thus the two surrogates

are roughly equivalent in strength. However, the heuristically

determined best surrogate is formed in a total of .89 seconds

for the problem set compared with 9.19 seconds for the dual

multiplier surrogate. The results are summarized in Table 2.

7. ANALYSIS OF ANCILLARY INFORMATION

7.1 TERMINATION OF ALGORITHM

The algorithm presented in 4.1, modified to incorporate

Method 2 for generating an initial surrogate and the approxi-

mate technique for resolving the surrogate knapsack problems,

terminates under the following conditions:

1. Stronger surrogates can no longer be constructed.

2. A feasible solution to the original problem has

been found.

Upon termination, one always has a solution which is a lower

bound for the vertex. The best surrogate formed is a weighted

combination of the original constraints which more heavily

weights those constraints which, in some sense, are critical.

The final set of knapsack ratios thus represents the attrac-

tiveness of the variables with respect to the critical con-

straints. One can take advantage of this situation to attempt

to find feasible solutions to the original problem.

13



7.2 FINDING FEASIBLE SOLUTIONS

When the algorithm terminates due to condition 1, one

knows which constraints were violated by the solution to the

best surrogate. Depending on the format (e.g., Balas) and

type of problem considered (e.g., set covering), one may be

able to raise additional variables to the one level in order

to satisfy the violated constraints. The last set of knapsack

ratios can be used to determine the order of raising additional

variables to the one level. For the 18 problems studied, it

is possible to quickly find a feasible solution to the original

problem. To get an indication of the effect of a feasible

solution on the total computation time, the algorithm employing

a dual multiplier surrogate every eight iterations carrying

forward a maximum of four surrogates (2.3) was again used.

The only difference was than an initial solution to use as a

bound was provided. The 18 problems tested requires 38.62

seconds to resolve without the bounds and 19.97 seconds with

the bounds. A total of .26 seconds of additional time is re-

quired to find feasible solutions for those problems in which

a feasible solution is not determined while iterating to a

best surrogate. The results are summarized in Table 1.

7.3 HISTORY OF VARIABLES AND CONSTRAINTS

When iterating to a best surrogate, one may use index

sets to record which variables are at the one level in the

solutions to the various surrogates. This information can be

used to attempt to find a feasible solution or for developing

14



a heuristic for branching in the Balas Algorithm. If addi-

tional information on the variables is desired, the exact

solution to the LP relaxation of (3) is immediately available

once the knapsack ratios have been determined (Dantzig, 1957].

Similarly, one can use an index set to record which of

the original constraints are violated while iterating to a

best surrogate. This information can be used advantageously

in the Balas Algorithm.

8. CONCLUSIONS

Using the heuristic procedure developed in this paper it

is possible to generate surrogates of strength comparable to

the dual multiplier surrogate in less than 10% of the time

required to form the dual multiplier surrogate. Because of

the way the surrogates are formed, one would expect that the

time required to converge to a best surrogate would behave

well as the size of the problem increases. The results of

the experimentation conducted suggest the following research:

1. Develop an algorithm which employs the heuristically

generated surrogate in a manner analogous to the

dual multiplier surrogate.

2. Develop heuristics for exploiting the ancillary

information developed when iterating to a best

surrogate.

3. Adapt the procedure to the general integer problem.
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TABLE 1

EFFECT OF A DUAL MULTIPLIER SURROGATE AND
AN INITIAL STARTING SOLUTION ON THE
SOLUTION TIMES OF A BALAS ALGORITHM

a b c d e f g h i

1 6 5 537 370 0.10 0.12 0.11 - 368
2 6 10 4,134 3,800 0.14 0.19 0.14 0.01 3,700
3 6 4 1,882 1,800 0.07 0.12 0.08 - 1,800
4 8 2 2,772 2,600 0.07 0.07 0.09 - 2,600
5 10 10 98,960 98,500 0.28 0.43 0.36 - 83,369
6 14 3 37,407 35,777 0.56 0.32 0.19 - 35,777
7 15 10 4,127 4,015 0.76 0.99 0.89 0.01 3,245
8 20 10 6,155 6,120 6.28 0.83 0.59 - 6,010
9 25 2 167 148 0.35 0.39 0.37 0.01 112
10 28 10 12,462 12,400 107.26 3.57 1.11 0.03 12,150
11 28 2 142,019 141,278 5.68 2.39 0.43 0.02 139,508
12 28 2 131,637 130,883 11.14 3.85 0.49 0.04 129,773
13 28 2 99,647 95,677 9.58 2.91 1.57 0.01 83,868
14 28 2 122,505 119,337 1.13 0.77 1.08 0.02 104,689
15 28 2 100,433 98,796 15.97 4.13 0.40 - 98,796
16 28 2 131,355 130,623 12.68 2.13 0.44 0.03 129,723
17 39 5 10,672 10,618 380.81 8.94 5.29 0.04 10,077
18 50 5 17,007 16,537 (>5631) 6.47 6.34 0.04 12,753

SUM (>6183) 38.62 19.97 0.26
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TABLE 2

COMPARISON OF THE DUAL MULTIPLIER
AND HEURISTIC SURROGATES

a b c d e f g h i i

1 5 5 167 5 100 100 100 0.12 0.01
2 6 10 334 100 100 100 100 0.21 0.04
3 6 4 82 100 100 100 100 0.14 0.02
4 8 2 172 42 100 100 100 0.12 0.01
5 10 10 46 100 100 100 100 0.36 0.01
6 14 3 1,630 100 100 100 100 0.23 0.01
7 15 10 112 20 65 65 65 0.49 0.07
8 20 10 35 100 100 100 100 0.68 0.05
9 25 2 19 16 74 58 * 0.34 0.05

10 28 10 62 35 35 ** ** 0.98 0.10
11 28 2 741 64 100 64 64 0.41 0.05
12 28 2 754 100 100 100 100 0.40 0.04
13 28 2 3,970 44 44 22 22 0.38 0.07
14 28 2 3,168 45 59 45 45 0.43 0.05
15 28 2 1,637 100 100 100 100 0.36 0.02
16 28 2 732 85 100 100 85 0.39. 0.06
17 39 5 54 19 20 17 0.96 0.12
18 50 5 47 19 87 87 38 1.17 0.11

SL 9.19 0.89

4J 4 0 0i 14

0 PU

_____4_ IF* cm~ Iu
Solt to best surrogate was 191 while solution to dual 1u4tiplier

surrogate was 164.

Solution to best surrogate was 12,470 while solution to da
imftiplier surrogate was 12,440.

Solution to best surrogate was 10,74wiesltotoda

774 whil souinoda

Soultiplier surrogate w 1s 0,662. 1

18



BIBLIOGRAPHY

1. Balas E. "An Additive Algorithm for Solving Linear
Programs With Zero-One Variables", Operations Research,
13. (1965), 517-546.

2. Balas, E. "Discrete Progranning by the Filter Method",
Operations Research, 15. (1967), 915-957.

3. Dantzig, G.B. "Discrete Variable Extremum Problems",
Operations Research, 5. (1957), 266-277.

4. Garfinkel, R.S., and G.L. Nemhauser. Integer Programming.
Wiley, 1972.

5. Geoffrion, A.M. "An Improved Implicit Enumeration
Approach for Integer Programming", operations Research,

17. (1969), 437-454.

6. Giordano, F. "The Strength of Surrogate Constraints for
the Linear Zero-One Integer Programming Problem",
Naval Postgraduate School Technical Report, NPS55-082-008,
February 1982.

7. Glover, F. "A Multiphase-Dual Algorithm for the Zero-
One Integer Programming Problem", Operations Research,
13. (1965), 879-919.

8. Glover, F. "Surrogate Constraints", Operations Research,
16. (1968), 741-749.

9. Taha, H.A. Integer Programming: Theory, Applications,
and Computations. Academic Press, 1975.

19



DISTRIBUTION LIST

NO. OF COPIES

Library, Code 0142 4

Naval Postgraduate School
Monterey, CA 93940

Dean of Research I

Code 012A
Naval Postgraduate School
Monterey, CA 93940

Library, Code 55 2

Naval Postgraduate School
Monterey, CA 93940

Professor F. R. Giordano 48

Code 53Gi
Naval Postgraduate School
Monterey, CA 93940

Defense Technical Information Center
ATTN: DTIC-DDR
Cameron Station
Alexandria, Virginia 22314

- g,. .


